首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   11篇
  2020年   1篇
  2018年   1篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   11篇
  2012年   12篇
  2011年   13篇
  2010年   12篇
  2009年   16篇
  2008年   17篇
  2007年   10篇
  2006年   10篇
  2005年   7篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   1篇
  1993年   6篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1949年   1篇
排序方式: 共有197条查询结果,搜索用时 31 毫秒
101.
Sap salinity effects on xylem conductivity in two mangrove species   总被引:5,自引:0,他引:5  
Xylem sap salinity and conductivity were examined in two mangrove ecosystem tree species . For Avicennia germinans , extracted xylem sap osmotic potentials ranged from −0.24 to −1.36 MPa versus −0.14 to −0.56 MPa for Conocarpus erectus. Xylem sap of Conocarpus did not vary in osmotic potential between sites nor between predawn and midday. In Avicennia , values were more negative at midday than predawn, and also more negative at hypersaline than hyposaline sites. After removing embolisms, specific conductivity ( K s) was measured as a function of salinity of the artificial xylem sap perfusion. For both species the lowest K s values, about 70% of the maximum K s, were obtained when stems were perfused with deionized water (0 m m ; 0.0 MPa) or with a 557-m m saline solution (−2.4 MPa). Higher K s values were obtained in the range from −0.3 to −1.2 MPa, with a peak at −0.82 ± 0.08 MPa for Avicennia and −0.75 ± 0.08 MPa for Conocarpus . The variations in K s values with minima both at very low and very high salt concentrations were consistent with published results for swelling and shrinking of synthetic hydrogels, suggesting native hydrogels in pit membranes of vessels could help regulate conductivity.  相似文献   
102.
ABSTRACT. Serine is an important amino acid that is utilized in the biosyntheses of proteins and lipids. It is directly incorporated into the head group of phosphatidylserine, which in turn can be converted to other phospholipids. Also, it is required for the formation of long chain bases, precursors of sphingolipids. Uptake and incorporation of radiolabeled serine into both lipids and acid-precipitable material were demonstrated in Pneumocystis carinii carinii organism preparations freshly isolated from infected rat lungs. Radioactivity in proteins was about double that observed in lipids. Liquid scintillation spectrometry of metabolically radiolabeled lipids separated by thin-layer chromatography showed 53% of the total radioactivity were in phosphatidylserine, 12% in phosphatidylethanolamine, 24% in ceramides, and 11% in long chain bases and other compounds. Four long chain bases were detected by thin-layer chromatography in hydrolyzed P. carinii ceramides metabolically labeled with radioactive serine. Phytosphingosine and dihydrosphingosine were tentatively identified by their migrations on thin-layer plates. Radiolabeled ethanolamine was incorporated into P. carinii phosphatidylethanolamine, but relatively low incorporation of radiolabeled choline into phosphatidylcholine occurred. The observations made in this study indicated that P. carinii has the biosynthetic capacity to metabolize phospholipid head groups and to de novo synthesize sphingolipids. L-Cycloserine and β-CI-D-alanine, inhibitors of long chain base synthesis, reduced the incorporation of serine into P. carinii long chain bases and ceramides, which supported the conclusion that the pathogen synthesizes sphingolipids.  相似文献   
103.
During the highest spring tides the intertidal sediment flats of estuaries are fully inundated at high water, and waders have no choice but to move to supratidal roosts, e.g. on open farmland, saltpans or beaches. However, in many estuaries during the lowest neap or intermediate tides there are sectors of upper intertidal sediment flats that remain exposed even at the peak of high water, and so waders have the choice of roosting either there or in supratidal sites. In the Tagus Estuary, Portugal, as elsewhere, waders use both types of roosts during high water. Our main objective was to understand what makes waders opt for one of these two types of available roosts. We monitored wader use of saltpans and intertidal roosts from spring to neap tides, and measured foraging and alarm behaviour, prey availability and disturbance by predators. Most of the wader species studied chose intertidal (mudflat) roosts whenever these were available, and only roosted in saltpans during the peak of spring tides. We hypothesized that this preference was explained either by an attempt (i) to continue feeding into the high water period, or (ii) to minimize predation risk. Extending feeding time into the high water period did not seem to be very relevant for roost choice because both prey availability and foraging activity were low in both types of roosts. However, predator disturbance was several times higher in the saltpans than in the intertidal roosts, suggesting that this factor may be the determinant in the choice of roost type.  相似文献   
104.
105.
ABSTRACT.
  • 1 The butterfly Sandia xami (Reakirt) has a very clumped yearly pattern of oviposition on its food plant Echeveria gibbiflora D.C., and the mean number of eggs per plant is always very low.
  • 2 Three features of host plants are highly associated with the probability of being oviposited upon: height of plant; degree of conspicuousness; and degree of isolation from conspecific plants.
  • 3 The relative importance of these factors as predictors of the probability of oviposition change according to the time scale considered: height and conspicuousness are more important over short (weekly) time intervals whilst isolation takes precedence over longer (yearly) periods.
  • 4 It is hypothesized that the clumped pattern of oviposition is responsible for the low numbers of the butterflies relative to their very abundant food plant.
  相似文献   
106.
107.
Sequences from two mitochondrial genes (cytochrome b and NADH1) were used to produce a molecular phylogeny for 12 named and two undescribed species of the genus Oligoryzomys. All analyses placed Oligoryzomys microtis as the most basal taxon, a finding consistent with previous studies that suggested the west‐central Amazon as a centre of origin for the tribe Oryzomyini to which Oligoryzomys belongs. Biogeographically, this suggests that Oligoryzomys had a South American origin, and later advanced northwards, entering Central America and Mexico more recently. Different analyses have provided consistent support for several additional clades that did not necessarily agree with the species groups hypothesized by previous studies. A molecular clock derived for these data suggests an origin for the genus of 6.67 Mya, with most speciation within the genus occurring between 3.7 and 1.5 Mya. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 551–566.  相似文献   
108.
A part of sperm glycosidase activities was detected as detergent-insoluble after sequential extractions with Triton X-100. Sixty per cent of total β-glucuronidase activity was found in the detergent-insoluble fraction. This portion of β-glucuronidase was resistant to extractions in the presence of 1m KCl, chaotropic agents, colchicine or cytochalasine B, being only partially solubilized by 3m KCl or DNAse I treatment. Results demonstrate that β-glucuronidase is tightly associated to the Triton X-100 resistant fraction.  相似文献   
109.
110.
The new species Ceratozamia vovidesii from a Pleistocene floristic refuge in southern Mexico is described and illustrated. It show an affinity with C. matudae Lundell and C. mirandae Vovides, Pérez-Farrera & Iglesias from Chiapas, but it differs from them in leaf, male and female cones, and trunk morphology.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 393–400.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号